Fusione Lazer Selettiva (SLM)
Selective Laser Melting o Metal Powder Bed Fusion è un processo di stampa 3D che produce oggetti solidi, utilizzando una fonte termica per indurre la fusione tra le particelle di polvere metallica uno strato alla volta.
La maggior parte delle tecnologie Powder Bed Fusion impiega meccanismi per aggiungere polvere durante la costruzione dell'oggetto, con il risultato che il componente finale viene racchiuso nella polvere metallica. Le principali variazioni nelle tecnologie Metal Powder Bed Fusion derivano dall'utilizzo di diverse fonti di energia; laser o fasci di elettroni.
Tipi di tecnologia di stampa 3D: Sinterizzazione laser diretta del metallo (DMLS); Fusione laser selettiva (SLM); Fusione del fascio di elettroni (EBM).
Materiali: Polvere di metallo: alluminio, acciaio inossidabile, titanio.
Precisione dimensionale: ±0.1mm.
Applicazioni comuni: Parti metalliche funzionali (aerospaziale e automobilistica); Medico; Dentale.
Punti di forza: Parti più resistenti e funzionali; Geometrie complesse.
Punti deboli: Piccole dimensioni di costruzione; Punto di prezzo più alto di tutte le tecnologie.
Fusione Lazer Selettiva (SLM)
Selective Laser Melting o Metal Powder Bed Fusion è un processo di stampa 3D che produce oggetti solidi, utilizzando una fonte termica per indurre la fusione tra le particelle di polvere metallica uno strato alla volta.
La maggior parte delle tecnologie Powder Bed Fusion impiega meccanismi per aggiungere polvere durante la costruzione dell'oggetto, con il risultato che il componente finale viene racchiuso nella polvere metallica. Le principali variazioni nelle tecnologie Metal Powder Bed Fusion derivano dall'utilizzo di diverse fonti di energia; laser o fasci di elettroni.
Tipi di tecnologia di stampa 3D: Sinterizzazione laser diretta del metallo (DMLS); Fusione laser selettiva (SLM); Fusione del fascio di elettroni (EBM).
Materiali: Polvere di metallo: alluminio, acciaio inossidabile, titanio.
Precisione dimensionale: ±0.1mm.
Applicazioni comuni: Parti metalliche funzionali (aerospaziale e automobilistica); Medico; Dentale.
Punti di forza: Parti più resistenti e funzionali; Geometrie complesse.
Punti deboli: Piccole dimensioni di costruzione; Punto di prezzo più alto di tutte le tecnologie.
Fusione Lazer Selettiva (SLM)
Selective Laser Melting o Metal Powder Bed Fusion è un processo di stampa 3D che produce oggetti solidi, utilizzando una fonte termica per indurre la fusione tra le particelle di polvere metallica uno strato alla volta.
La maggior parte delle tecnologie Powder Bed Fusion impiega meccanismi per aggiungere polvere durante la costruzione dell'oggetto, con il risultato che il componente finale viene racchiuso nella polvere metallica. Le principali variazioni nelle tecnologie Metal Powder Bed Fusion derivano dall'utilizzo di diverse fonti di energia; laser o fasci di elettroni.
Tipi di tecnologia di stampa 3D: Sinterizzazione laser diretta del metallo (DMLS); Fusione laser selettiva (SLM); Fusione del fascio di elettroni (EBM).
Materiali: Polvere di metallo: alluminio, acciaio inossidabile, titanio.
Precisione dimensionale: ±0.1mm.
Applicazioni comuni: Parti metalliche funzionali (aerospaziale e automobilistica); Medico; Dentale.
Punti di forza: Parti più resistenti e funzionali; Geometrie complesse.
Punti deboli: Piccole dimensioni di costruzione; Punto di prezzo più alto di tutte le tecnologie.
La sinterizzazione selettiva di Lazer, nota anche come Powder Bed Fusion, è un processo di stampa 3D in cui una fonte di energia termica indurrà selettivamente la fusione tra le particelle di polvere all'interno di un'area di costruzione per creare un oggetto solido.
Molti dispositivi Powder Bed Fusion impiegano anche un meccanismo per applicare e levigare la polvere contemporaneamente a un oggetto che viene fabbricato, in modo che l'oggetto finale sia racchiuso e supportato nella polvere inutilizzata.
Tipi di tecnologia di stampa 3D: Sinterizzazione laser selettiva (SLS).
Materiali: Polvere termoplastica (Nylon PA11, Nylon PA12).
Precisione dimensionale: ±0,3% (limite inferiore ±0,3 mm).
Applicazioni comuni: parti funzionali; Condotti complessi (disegni cavi); Produzione di pezzi a bassa tiratura.
Punti di forza: Parti funzionali, buone proprietà meccaniche; Geometrie complesse.
Punti di debolezza: Tempi di consegna più lunghi; Costo maggiore rispetto a FFF per applicazioni funzionali.
Sinterizzazione laser selettiva (SLS)
