Selective Lazer Melting (SLM)
Selective Laser Melting or Metal Powder Bed Fusion is a 3D printing process which produces solid objects, using a thermal source to induce fusion between metal powder particles one layer at a time.
Most Powder Bed Fusion technologies employ mechanisms for adding powder as the object is being constructed, resulting in the final component being encased in the metal powder. The main variations in metal Powder Bed Fusion technologies come from the use of different energy sources; lasers or electron beams.
-
Types of 3D Printing Technology: Direct Metal Laser Sintering (DMLS); Selective Laser Melting (SLM); Electron Beam Melting (EBM).
-
Materials: Metal Powder: Aluminum, Stainless Steel, Titanium.
-
Dimensional Accuracy: ±0.1 mm.
-
Common Applications: Functional metal parts (aerospace and automotive); Medical; Dental.
-
Strengths: Strongest, functional parts; Complex geometries.
-
Weaknesses: Small build sizes; Highest price point of all technologies.
Selective Lazer Melting (SLM)
Selective Laser Melting or Metal Powder Bed Fusion is a 3D printing process which produces solid objects, using a thermal source to induce fusion between metal powder particles one layer at a time.
Most Powder Bed Fusion technologies employ mechanisms for adding powder as the object is being constructed, resulting in the final component being encased in the metal powder. The main variations in metal Powder Bed Fusion technologies come from the use of different energy sources; lasers or electron beams.
-
Types of 3D Printing Technology: Direct Metal Laser Sintering (DMLS); Selective Laser Melting (SLM); Electron Beam Melting (EBM).
-
Materials: Metal Powder: Aluminum, Stainless Steel, Titanium.
-
Dimensional Accuracy: ±0.1 mm.
-
Common Applications: Functional metal parts (aerospace and automotive); Medical; Dental.
-
Strengths: Strongest, functional parts; Complex geometries.
-
Weaknesses: Small build sizes; Highest price point of all technologies.
Selective Lazer Melting (SLM)
Selective Laser Melting or Metal Powder Bed Fusion is a 3D printing process which produces solid objects, using a thermal source to induce fusion between metal powder particles one layer at a time.
Most Powder Bed Fusion technologies employ mechanisms for adding powder as the object is being constructed, resulting in the final component being encased in the metal powder. The main variations in metal Powder Bed Fusion technologies come from the use of different energy sources; lasers or electron beams.
-
Types of 3D Printing Technology: Direct Metal Laser Sintering (DMLS); Selective Laser Melting (SLM); Electron Beam Melting (EBM).
-
Materials: Metal Powder: Aluminum, Stainless Steel, Titanium.
-
Dimensional Accuracy: ±0.1 mm.
-
Common Applications: Functional metal parts (aerospace and automotive); Medical; Dental.
-
Strengths: Strongest, functional parts; Complex geometries.
-
Weaknesses: Small build sizes; Highest price point of all technologies.
Our 3D scanning facilities technologies will capture 3D measurements from objects as small as a pin head or as large as a Production Factory. When we remove the constraints imposed by conventional measurement technologies, the scope of applications becomes virtually limitless with 3D, digital data in hand. While much of our work is in reverse engineering and product inspection, there are so many other uses for our 3D laser scanning and 3D measurement data. Our team of highly skilled professionals can transform the raw point cloud or CMM data into output formats that are the foundation for design, documentation, visualization, and analysis as well.
3D Laser Scanning is a non-contact, non-destructive technology that digitally captures the shape of physical objects using a line of laser light. 3D laser scanners create “point clouds” of data from the surface of an object. In other words, 3D laser scanning is a way to capture a physical object’s exact size and shape into the computer world as a digital 3-dimensional representation.
3D laser scanners measure fine details and capture free-form shapes to quickly generate highly accurate point clouds. 3D laser scanning is ideally suited to the measurement and inspection of contoured surfaces and complex geometries which require massive amounts of data for their accurate description and where doing this is impractical with the use of traditional measurement methods or a touch probe.
The 3D Scanning Process:
Data Acquisition via 3D Laser Scanning
3D Laser Scanning Process An object that is to be laser scanned is placed on the bed of the digitizer. Specialized software drives the laser probe above the surface of the object. The laser probe projects a line of laser light onto the surface while 2 sensor cameras continuously record the changing distance and shape of the laser line in three dimensions (XYZ) as it sweeps along the object.
Resulting Data
The shape of the object appears as millions of points called a “point cloud” on the computer monitor as the laser moves around capturing the entire surface shape of the object. The process is very fast, gathering up to 750,000 points per second and very precise (to ±.0005″).
Modeling Choice Depends on Application
After the huge point cloud data files are created, they are registered and merged into one three-dimensional representation of the object and post-processed with various software packages suitable for a specific application.
Point Cloud Data for Inspection
If the data is to be used for inspection, the scanned object can be compared to the designer’s CAD nominal data. The result of this comparison process is delivered in the form of a “color map deviation report,” in PDF format, which pictorially describes the differences between the scan data and the CAD data.
CAD Model
Laser scanning is the fastest, most accurate, and automated way to acquire 3D digital data for reverse engineering. Again, using specialized software, the point cloud data is used to create a 3D CAD model of the part’s geometry. The CAD model enables the precise reproduction of the scanned object, or the object can be modified in the CAD model to correct imperfections. Laser Design can provide a surface model or the more complex solid model, whichever results are needed for the application.
Coordinate Measuring Machine
CMMs are comprised of three main components: the machine itself, the measuring probe, and the control or computing system with appropriate measuring software. After placing a workpiece on the machine table, a probe is used to measure different points on it by mapping the x, y, z coordinates. The probe operates either manually via an operator or automatically via a control system. These points are then uploaded to a computer interface where they can be analyzed using modeling software (e.g., CAD) and regression algorithms for further development. We at Forcyst, provide the best accurate CMM services available.
Contact us now for any mechanical engineering related work for your company starting from research and development to concept design and product development to design engineering, prototyping and manufacturing to multiple industrial sectors across India.