Selective Lazer Melting (SLM)
Selective Laser Melting or Metal Powder Bed Fusion is a 3D printing process which produces solid objects, using a thermal source to induce fusion between metal powder particles one layer at a time.
Most Powder Bed Fusion technologies employ mechanisms for adding powder as the object is being constructed, resulting in the final component being encased in the metal powder. The main variations in metal Powder Bed Fusion technologies come from the use of different energy sources; lasers or electron beams.
-
Types of 3D Printing Technology: Direct Metal Laser Sintering (DMLS); Selective Laser Melting (SLM); Electron Beam Melting (EBM).
-
Materials: Metal Powder: Aluminum, Stainless Steel, Titanium.
-
Dimensional Accuracy: ±0.1 mm.
-
Common Applications: Functional metal parts (aerospace and automotive); Medical; Dental.
-
Strengths: Strongest, functional parts; Complex geometries.
-
Weaknesses: Small build sizes; Highest price point of all technologies.
Selective Lazer Melting (SLM)
Selective Laser Melting or Metal Powder Bed Fusion is a 3D printing process which produces solid objects, using a thermal source to induce fusion between metal powder particles one layer at a time.
Most Powder Bed Fusion technologies employ mechanisms for adding powder as the object is being constructed, resulting in the final component being encased in the metal powder. The main variations in metal Powder Bed Fusion technologies come from the use of different energy sources; lasers or electron beams.
-
Types of 3D Printing Technology: Direct Metal Laser Sintering (DMLS); Selective Laser Melting (SLM); Electron Beam Melting (EBM).
-
Materials: Metal Powder: Aluminum, Stainless Steel, Titanium.
-
Dimensional Accuracy: ±0.1 mm.
-
Common Applications: Functional metal parts (aerospace and automotive); Medical; Dental.
-
Strengths: Strongest, functional parts; Complex geometries.
-
Weaknesses: Small build sizes; Highest price point of all technologies.
Selective Lazer Melting (SLM)
Selective Laser Melting or Metal Powder Bed Fusion is a 3D printing process which produces solid objects, using a thermal source to induce fusion between metal powder particles one layer at a time.
Most Powder Bed Fusion technologies employ mechanisms for adding powder as the object is being constructed, resulting in the final component being encased in the metal powder. The main variations in metal Powder Bed Fusion technologies come from the use of different energy sources; lasers or electron beams.
-
Types of 3D Printing Technology: Direct Metal Laser Sintering (DMLS); Selective Laser Melting (SLM); Electron Beam Melting (EBM).
-
Materials: Metal Powder: Aluminum, Stainless Steel, Titanium.
-
Dimensional Accuracy: ±0.1 mm.
-
Common Applications: Functional metal parts (aerospace and automotive); Medical; Dental.
-
Strengths: Strongest, functional parts; Complex geometries.
-
Weaknesses: Small build sizes; Highest price point of all technologies.

''Engineering is the closest thing to
magic that exists in the world"
Binder Jetting is a 3D printing process where a liquid bonding agent selectively binds regions of a powder bed.
Binder Jetting is a similar 3D printing technology to SLS, with the requirement for an initial layer of powder on the build platform. But unlike SLS, which uses a laser to sinter powder, Binder Jetting moves a print head over the powder surface depositing binder droplets which are typically 80 microns in diameter. These droplets bind the powder particles together to produce each layer of the object.
Once a layer has been printed, the powder bed is lowered and a new layer of powder is spread over the recently printed layer. This process is repeated until a complete object is formed.
The object is then left in the powder to cure and gain strength. Afterwards, the object is removed from the powder bed and any unbound powder is removed using compressed air.
-
Types of 3D Printing Technology: Binder Jetting (BJ).
-
Materials: Sand or metal powder: Stainless / Bronze, Full color sand, Silica (sand casting).
-
Dimensional Accuracy: ±0.2 mm (metal) or ±0.3 mm (sand).
-
Common Applications: Functional metal parts; Full color models; Sand casting.
-
Strengths: Low-cost; Large build volumes; Functional metal parts.
-
Weaknesses: Mechanical properties not as good as metal powder bed fusion.
Metal Binding Jetting (BJ)

Are you looking for the complete 3D printing rapid prototyping services? Forcyst is your one stop solution. Our experts will help you out with the different prototyping from SLA, SLM to Drop on demand & SLS as per your requirement.
Forcyst, as India's leading design engineering and rapid prototyping company based in Mumbai offers complete product design & development solutions from concept design & research to 3D printing and manufacturing to the multiple sectors including medical, automotive, oil & gas and more.
Contact us now or email us at support@forcyst.com to get in touch with us.